Syntheses with Organoboranes. XI. Allylboration of Vinylic Epoxides with Allylic Dialkylboranes

ORGANIC LETTERS 2000 Vol. 2, No. 24 ³⁸⁹⁷-**³⁸⁹⁹**

Marek Zaidlewicz* and Marek P. Krzemiński

*Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland zaidle*V*i@chem.uni.torun.pl*

Received September 24, 2000

ABSTRACT

Allylboration of representative vinylic epoxides with allyldiethylborane (1) and (2-cyclohexenyl)dicyclohexylborane (2) affords the corresponding 1,2- and 1,4-addition products. *cis***-1,2-Addition is favored in the reaction of 1 with 3,4-epoxycycloalkenes of six- to eight-membered rings. 3,4-Epoxycyclopentene (3a) and 5,5-dimethyl-3,4-epoxycyclopentene (3b) undergo five-membered ring opening during allylboration with 1 and 2, producing the corresponding (***Z***)-trienols (4a and 4b) with high stereoselectivity. 1,4-Addition of 1 and 2 to monoepoxides of 1,3-butadiene and isoprene is favored, producing predominantly the corresponding (***E***)-alcohols.**

Vinylic epoxides are versatile synthetic building blocks, and their synthesis and reactions are extensively studied.¹ Recently, we described the kinetic resolution of vinylic epoxides with chiral dialkylboranes of high optical purity.² Earlier, we showed that the reduction of these compounds with borane and dialkylboranes proceeds with high stereoselectivity affording the corresponding allylic alcohols of (*Z*) configuration.3

The addition of various organometallic reagents to vinylic epoxides provides an access to allylic and homoallylic alcohols.4 Thus, 1,2-addition products are favored by Grignard regents,⁵ allylstannanes,⁶ and tetraallyllanthanoid complexes.7 1,4-Addition predominates with organocopper reagents⁸ and copper-catalyzed reactions of organomagnesium⁹ and organozinc compounds.¹⁰ Vinylic tellurides,¹¹

organozinc, 12 and organosilicon¹³ compounds have also been used. However, mixtures of regio- and stereoisomers and rearranged products are often obtained. Clearly, new reagents are desirable.

The reactions of vinylic epoxides with organoboranes have not been extensively studied. Trialkylboranes react with 3,4 epoxy-1-butene under free radical conditions affording 1,4 addition products.14 The addition of 1-alkenylboranes in the presence of palladium and nickel complexes provides

(11) Tucci, F. C.; Chieffi, A.; Comasseto, J. V.; Marino, J. P. *J. Org. Chem.* **1996**, *61*, 4975.

^{(1) (}a) Trost, B. M.; McEachern, E. J.; Toste, F. D. *J. Am. Chem. Soc.* **1998**, *120*, 12702. (b) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda A. H. *J. Am. Chem. Soc.* **1998**, *120*, 8340. (c) Rychlet Elliott, M.; Dhimane, A.-L.; Maracria, M. *Tetrahedron Lett.* **1998**, *39*, 8849. (d) Caldwell, C. G.; Derguini, F.; Bigge, C. F.; Chen, A.-H.; Hu, S.; Wang, J.; Sastry, L.; Nakanishi, K. *J. Org. Chem.* **1993**, *58*, 3533. (e) Chang, S.; Heid, R. M.; Jacobsen, E. N. *Tetrahedron Lett.* **1994**, *35*, 669.

⁽²⁾ Zaidlewicz, M.; Krzemin´ski, M. *Tetrahedron Lett.* **1996**, *39*, 7131. (3) Zaidlewicz, M.; Uzarewicz, A.; Sarnowski, R. *Synthesis* **1979**, 62. (4) Gorzynski-Smiths, J. *Synthesis* **1984**, 629.

^{(5) (}a) Rose, B. C.; Taylor, S. K. *J. Org. Chem.* **1974**, *39*, 578. (b) Bloodworth, A. J.; Curtis, R. J.; Spencer, M. D.; Tallant, N. A. *Tetrahedron* **1993**, 49, 2729. (c) Söderberg, B. C.; Austin, L. R.; Davis, C. A.; Nyström, J. E.; Vågberg, J. O. *Tetrahedron* **1994**, *50*, 61.

⁽⁶⁾ Naruta, Y.; Maruyama, K. *Chem. Lett.* **1987**, 963.

⁽⁷⁾ Fukuzawa, S.; Sakai, S. *Bull. Chem. Soc. Jpn.* **1992**, *65*, 3308.

^{(8) (}a) Marshall, J. A. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 1503. (b) Marshall, J. A.;

Crute, T. D., III; Hsi, J. D. *J. Org. Chem.* **1992**, *57*, 115. (c) Harms, A. E.; Stille, J. R.; Taylor, S. K. *Organometallics* **1994**, *13*, 1456.

^{(9) (}a) Lee, E. R.; Lacomy, I.; Bigler, P.; Scheffold, R. *Hel*V*. Chim. Acta* **1991**, *74*, 146. (b) Jung, M. E.; D'Amico, D. C. *J. Am. Chem. Soc.* **1995**, *117*, 7379.

^{(10) (}a) Lipshutz, B. H.; Woo, K.; Gross, T.; Buzard, D. J.; Tirado, R. *Synlett* **1997**, 477. (b) Badalassi F.; Crotti P.; Macchia F.; Pineschi M.; Arnold A.; Feringa B. L. *Tetrahedron Lett.* **1998**, *39*, 7795.

⁽¹²⁾ Eshelby, J. J.; Parsons, P. J.; Crowley, P. J. *J. Chem. Soc., Perkin Trans. 1* **1996**, 191.

mixtures of 1,2- and 1,4-addition products.15 Here, we wish to report the allylboration of vinylic epoxides. The reactions of allyldiethylborane (**1**) and (2-cyclohexenyl)dicyclohexylborane (**2**) with representative vinylic epoxides derived from acyclic and cyclic dienes were examined.

Allyldiethylborane was conveniently prepared in 81% yield by transmetalation of allylaluminumsesquibromide and *n*amyl diethylborinate obtained by treatment of chlorodiethylborane with 1-pentanol.¹⁶ (2-Cyclohexenyl)dicyclohexylborane was synthesized by the hydroboration of 1,3-cyclohexadiene with dicyclohexylborane.17

3,4-Epoxycyclopentene (**3a**) reacted readily with **1** in diethyl ether at room temperature to give one major product in good yield (Table 1). Surprisingly, it was not the expected

Table 1. Allylboration of **3a** and **3b** with **1** at Room Temperature

		time	product composition ^a $(\%)$			yield ^b
epoxide	solvent	(h)	4	5 ^c	6 ^d	(%)
3a	Et ₂ O	3	90	4	6	78
3a	THF	$\overline{4}$	88		12	80
3b	Et ₂ O	24	73	12	15	77
3b	THF	12	93	4	3	81

^a Determined by GC analysis. *^b* Isolated yields. *^c cis*/*trans* mixture. Identified by hydrogenation and comparison with authentic samples of *cis*and *trans*-2-propylcyclopentanols and 5,5-dimethyl-2-propylcyclo-pentanols, respectively. *^d* Identified by GC comparison with authentic samples prepared by the reaction of allylmagnesium bromide with **3a** and **3b**, respectively.

1,2- or 1,4-addition product but the acyclic (*Z*)-trienol (**4a**) formed by the addition of allyl group and opening of both the epoxide and cyclopentene rings. Its structure and (*Z*) configuration of the disubstituted internal double bond was established by 2D $\rm{^{1}H}$ and $\rm{^{13}C}$ NMR analysis.¹⁸ Only 4% of the 1,2-addition product **5a** and 6% of **6a**, derived from 3-cyclopentenone formed by rearrangement of the starting epoxide, was obtained.¹⁹

In tetrahydrofuran **5a** was not formed but the amount of **6a** increased. Allylboration of 3,4-epoxy-5,5-dimethylcyclopentene²⁰ (3b) with 1 produced also the corresponding (Z) trienol (**4b**). The reaction carried out in tetrahydrofuran was slower compared with **3a**, but the product was obtained in good purity and yield (Table 1).

Similarly, **2** reacted with **3a** to give the same type of product, (*Z*)-trienol (**7**), in moderate yield. (*Z*)-Configuration of the disubstituted double bond fixed in the ring is retained in the product.

A stereoselective five-membered ring opening has also been observed in the hydrolysis of **3a** in water at $pH \ge 7$ leading to the formation of (*Z*)-2,4-pentadienal, in addition to cyclopentanediols and 3-cyclopentenone.²¹

The reactivity of 3,4-epoxycycloalkenes (**8a**-**c**) toward **¹** decreases with the increasing cycloalkene ring size (Table 2). Thus, 3,4-epoxycyclohexene reacted in diethyl ether at

(18) **(5***Z***)-1,5,7-Octatrien-4-ol** (**4a**)**. Representative Procedure.** All operations were carried out under a nitrogen atmosphere. To a stirred solution of 3,4-epoxy-1-cyclopentene (**3a**) (1.23 g, 15 mmol) in diethyl ether (15 mL), was added allyldiethylborane (**1**) (1.65 g, 15 mmol) at room temperature. After 3 h, 11B NMR analysis indicated no signal at *δ* 85 ppm corresponding to **1**. Ether was removed and THF (20 mL) was added. The mixture was cooled to 0 °C and oxidized with 3 M NaOH (6 mL) and 30% $H₂O₂$ (6 mL) for 4 h at room temperature. The organic layer was separated and the aqueous layer was extracted with diethyl ether $(3 \times 10 \text{ mL})$. The combined organic solutions were washed with brine and dried over anhydrous magnesium sulfate. The product was isolated by distillation: 1.45 g, 78% yield, bp $64-66$ °C/3 mmHg. GC analysis on a capillary Supelcowax-10 column (30 m \times 0.32 mm) revealed (*5Z*)-1,5,7-octatrien-4-ol (**4a**) (90%), 1-allyl-3-cyclopenten-1-ol (**6a**) (6%), and *cis*/*trans*-2-allyl-3-cyclopenten-1-ol (**5a**) (4%). An analytical sample of **4a** was separated by preparative GC. Anal. for $C_8H_{12}O$ (124.18): calcd 77.38% C, 9.74% H; found 77.30% C, 9.78% H. ¹H and ¹H \times ¹H COSY NMR (CDCl₃): δ 1.65 (s, 1H, OH), 2.32 (t, $J = 6.5$, 2H, CH₂), 4.64 (q, $J = 8.5$, 1H, \overline{HC} OH), 5.20 (m, 4H, C₍₁₎H₂, C₍₈₎H₂), 5.45 (t, *J* = 9.8, 1H, C₍₅₎H), 5.81 (m, 1H, C₍₂₎H), 6.08 (t, $J = 11.1$, 1H, C₍₆₎H), 6.62 (dt, $J = 16.8$, 10.6, 1H, C(7)H). 13C NMR (CDCl3): *δ* 42.02, 67.14, 118.28, 119.38, 130.72, 131.77, 133.39, 133.97. ¹H \times ¹³C HETCOR NMR (CDCl₃) (correlation peaks): 2.31 (t, 2H) -41.82 (C₍₃₎H₂), 4.62 (q, 1H) -66.98 (HC₍₄₎OH), 5.20 (m, 4H) -118.01 , 119.13 (C₍₃H₂), C₍₃H₂), 5.44 (t, 1H) -133.34 (C₍₃H₂), 5.80 4H) -118.01 , 119.13 (C₍₁₎H₂, C₍₈₎H₂), 5.44 (t, 1H) -133.34 (C₍₅₎H), 5.80
(m. 1H) -133.87 (C₍₂₎H), 6.06 (t, 1H) -130.48 (C₍₆)H), 6.63 (dt, 1H) $(m, 1H)$ -133.87 (C₍₂₎H), 6.06 (t, 1H) -130.48 (C₍₆₎H), 6.63 (dt, 1H) -131.67 (C₍₇₎H). The ¹H and ¹³C NMR spectra were recorded on a Varian Gemini 200 instrument.

(19) For comparison, the reaction of allylmagnesium bromide with **3a** in diethyl ether at 0 °C gave *trans*-**5a** (42%), **6a** (23%), and the 1,4-addition product *trans*-4-allyl-2-cyclopenten-1-ol (35%).

⁽¹³⁾ Matsukashi, H.; Asai, S.; Hirayabashi, K.; Hatanaka, Y.; Mori, A.; Hiyama, T. *Bull. Chem. Soc. Jpn.* **1997**, *70*, 1943.

⁽¹⁴⁾ Suzuki, M.; Miyaura, N.; Itoh, M.; Brown, H. C.; Holland, G. W.; Negishi, E. *J. Am. Chem. Soc.* **1971**, *93*, 2792.

⁽¹⁵⁾ Miyaura, N.; Tanabe, Y.; Suginome, M.; Suzuki, A. *J. Organomet. Chem.* **1982**, *233*, C13.

⁽¹⁶⁾ Mikhailov, B. M.; Bubnov, Y. N.; Tsyban, A. V. *J. Organomet. Chem.* **1978**, *154*, 113.

⁽¹⁷⁾ Hydroboration of 1,3-cycloalkadienes, except 1,3-cyclopentadiene, with dialkylboranes provides preferentially the allylic borane derivatives: Brown, H. C.; Bhat, K. S.; Jadhav, P. K. *J. Chem. Soc., Perkin Trans. 1* **1991**, 2633. The homoallylic borane derivative formed as a minor product (9%) does not interfere in the allylboration reaction.

⁽²⁰⁾ Compound **3b** was synthesized by epoxidation of 5,5-dimethyl-1,3 cyclopentadiene. (a) Crandall, J. K.; Banks, D. B.; Colyer, R. A. *J. Org. Chem.* **1968**, *33*, 423. (b) Smith, W. T.; McLeod, G. L. *Organic Syntheses*; Schreiber, R. S., Ed.; J. Wiley: New York, 1951; Vol. 31, p 40. (c) Holder, R. W.; Daub, J. P.; Baker, W. E.; Gilbert, R. H., III; Graf, N. A. *J. Org. Chem.* **1982**, *47*, 1445.

⁽²¹⁾ Ross, A. M.; Pohl, T. M.; Piazza, K.; Thomas, M.; Fox, B.; Whalen, D. L. *J. Am. Chem. Soc.* **1982**, *104*, 1658.

Table 2. Allylboration of **8a**-**^c** with **¹**

^a Determined by GC analysis. *^b* Isolated yields. *^c* The *cis*/*trans* ratio was established by hydrogenation to *cis*/*trans* 2- and 4-propyl-cyclohexanols and comparison with authentic samples by GC.

room temperature, whereas 3,4-epoxycyclooctene required prolonged heating under neat conditions.

The 1,2-addition of **1** to these epoxides is favored over 1,4-addition, and essentially no rearrangement of the epoxides to the corresponding ketones is observed under the reaction conditions used (Table 2). Noteworthy is the preferential formation of *cis*-2-allyl-3-cycloalken-1-ols.

The *cis*-1,2-addition may be rationalized assuming coordination of boron to oxygen of the vinylic epoxide and intramolecular transfer of allyl group via a six-membered transition state. In contrast, other allylmetal reagents, e.g., derivatives of magnesium, tin, and copper, react with **8a** producing *trans*-2-allyl-3-cyclohexen-1-ol or *trans*-4-allyl-2-cyclohexen-1-ol (Table 3). Recently, a carbometalation

Table 3. Reaction of Allylmetal Reagents with **8a**

^a Isolated yields. *^b* Reference 5c. *^c* Reference 6. *^d* Not reported. *^e* Reference 8c.

approach to *cis*-**9a** by allylboration of 1,3-cyclohexadiene with allyldibromoborane was reported.²²

Allylboration of epoxides **12a** and **12b** derived from acyclic 1,3-dienes was slower compared tothat of **8a** and **8b** (Table 4). The reaction required several days when carried

^a Determined by GC analysis. Products identified by 1H and 13C NMR analysis and by comparison (GC, ¹H and ¹³C NMR) with authentic samples. *b* Isolated yields.

at room temperature. However, at 60 °C under neat conditions **1** reacted with **12a** in 24 h, and **2** required 48 h.

Despite the prolonged reaction time rearrangement of the epoxides is not a competing reaction since only very small amounts of rearranged products **15a** and **15b** were obtained (Table 4). 1,4-Addition predominates and the ratio of *E*/*Z* isomers is in the range of 80/20.

In conclusion, the allylboration of 3,4-epoxycyclopentene and its alkyl-substituted derivatives provides a convenient access to the corresponding acyclic (*Z*)-trienols in high stereoselectivity and good yields. The preferential *cis*-1,2 addition of **1** to 3,4-epoxycycloalkenes provides *cis*-2-allyl-3-cycloalken-1-ols. The stereochemistry of the addition is opposite to other allylmetal reagents.

Acknowledgment. Financial support from the State Committee for Scientific Research, Warsaw, grant TO9A 13809, is acknowledged.

Supporting Information Available: Spectroscopic data for all new products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006641G

^{(22) (}a) Singleton, D. A.; Waller, S. C.; Zhang, Z.; Frantz, D. E.; Leung, S.-W. *J. Am. Chem. Soc.* **1996**, *118*, 9986. (b) Frantz, D. E.; Singleton, D. A. *Org. Lett.* **1999**, *1*, 485.